Recognition of DNA insertion/deletion mismatches by an activity in Saccharomyces cerevisiae.
نویسندگان
چکیده
An activity in nuclear extracts of S.cerevisiae binds specifically to heteroduplexes containing four to nine extra bases in one strand. The specificity of this activity (IMR, for insertion mismatch recognition) in band shift assays was confirmed by competition experiments. IMR is biochemically and genetically distinct from the MSH2 dependent, single base mismatch binding activity. The two activities migrate differently during electrophoresis, they are differentially competable and their spectra of mispair binding are distinct. Furthermore, IMR activity is observed in extracts from an msh2- msh3- msh4- strain. IMR exhibits specificity for insertion mispairs in two different sequence contexts. Binding is influenced by the structure of the mismatch since an insertion with a hairpin configuration is not recognized by this activity. IMR does not result from single-strand binding because single-stranded probes to not yield IMR complex and single-stranded competitors are unable to displace insertion heteroduplexes from the complex. Similar results with intrinsically bent duplexes make it unlikely that recognition is conferred by a bend alone. Heteroduplexes bound by IMR do not contain any obvious damage. These findings are consistent with the idea that yeast contains a distinct recognition factor, IMR that is specific for insertion/deletion mismatches.
منابع مشابه
Involvement of DNA mismatch repair in the maintenance of heterochromatic DNA stability in Saccharomyces cerevisiae
Heterochromatin contains a significant part of nuclear DNA. Little is known about the mechanisms that govern heterochromatic DNA stability. We show here that in the yeast Saccharomyces cerevisiae (i) DNA mismatch repair (MMR) is required for the maintenance of heterochromatic DNA stability, (ii) MutLα (Mlh1-Pms1 heterodimer), MutSα (Msh2-Msh6 heterodimer), MutSβ (Msh2-Msh3 heterodimer), and Exo...
متن کاملMismatch correction catalyzed by cell-free extracts of Saccharomyces cerevisiae.
Heteroduplex DNA substrates containing a 4- or 7-base-pair insertion/deletion mismatch or each of the eight possible single-base-pair mismatches were constructed. Extracts of mitotic Saccharomyces cerevisiae cells catalyzed the correction of mismatched nucleotides in a reaction that required Mg2+ and had a partial requirement for ATP and the four dNTPs. The insertion/deletion mismatches and the...
متن کاملThe Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions.
The yeast Saccharomyces cerevisiae encodes four proteins, Msh1, Msh2, Msh3, Msh4, that show strong amino acid sequence similarity to MutS, a central component of the bacterial mutHLS mismatch repair system. MutS has been shown to recognize base pair mismatches in DNA in vitro. Previous studies have suggested that Msh2 is the major mismatch recognition protein in yeast. In this study, the 109-kD...
متن کاملRegulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes.
The Saccharomyces cerevisiae homologs of the bacterial mismatch repair proteins MutS and MutL correct replication errors and prevent recombination between homeologous (nonidentical) sequences. Previously, we demonstrated that Msh2p, Msh3p, and Pms1p regulate recombination between 91% identical inverted repeats, and here use the same substrates to show that Mlh1p and Msh6p have important antirec...
متن کاملEXO1 and MSH6 are high-copy suppressors of conditional mutations in the MSH2 mismatch repair gene of Saccharomyces cerevisiae.
In Saccharomyces cerevisiae, Msh2p, a central component in mismatch repair, forms a heterodimer with Msh3p to repair small insertion/deletion mismatches and with Msh6p to repair base pair mismatches and single-nucleotide insertion/deletion mismatches. In haploids, a msh2Delta mutation is synthetically lethal with pol3-01, a mutation in the Poldelta proofreading exonuclease. Six conditional alle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 24 4 شماره
صفحات -
تاریخ انتشار 1996